Geradengleichungen – Normalform (y=mx+b) | sofatutor.com (2024)

Normalform der Geradengleichung

Die NASA plant für den Valentinstag eine große Spezialmission. Dafür benötigt sie unsere Hilfe. Für die Liveübertragung vom Sonnenaufgang auf dem Mars soll ein Marsrover auf eine Bergspitze gesendet werden. Es muss geprüft werden, ob der Rover dafür genügend Energie hat und welche Route die beste ist. Behilflich können wir mit der Normalform der Geradengleichung sein.

Was ist die Normalform einer Geradengleichung?

Es gibt drei übliche Formen einer Geradengleichung. Hier schauen wir uns die Normalform genauer an. Sie ist gegeben durch:

$y = m\,x + b$

Dabei ist $m$ die Steigung der Gerade und $b$ der $y$-Achsenabschnitt, also der Punkt, an dem die Gerade die $y$-Achse schneidet.

Geradengleichungen – Normalform (y=mx+b) | sofatutor.com (1)

Die Steigung $m$ kann mithilfe zweier Punkte der Geraden im Koordinatensystem berechnet werden.

$m = \frac{\Delta\,y}{\Delta\,x}$

$\Delta$ steht dabei für die Differenz der Koordinaten:

$m = \frac{\Delta\,y}{\Delta\,x} = \frac{y_2 - y_1}{x_2 - x_1}$

Der $y$-Achsenabschnitt $b$ kann direkt aus dem Koordinatensystem abgelesen werden.

Einfluss von $m$ und $b$ auf den Graphen der Funktion

Schauen wir uns die Gerade zu der Gleichung $y=2\,x+1$ im Koordinatensystem an. Sie ist gekennzeichnet durch die rote Linie. Die Gerade schneidet die $y$-Achse an der Stelle $y=1$.

Geradengleichungen – Normalform (y=mx+b) | sofatutor.com (2)

Ändern wir den $y$-Achsenabschnitt $b$ zu $2$, so verschiebt sich die Gerade um eine Einheit nach oben, der Anstieg bleibt jedoch gleich. Dargestellt als blaue Gerade in der Grafik.
Ändern wir $b$ nun zu $-1$, so bleibt die Steigung ebenfalls gleich. Die Gerade wird um zwei Einheiten nach unten verschoben, zu sehen an der grünen Geraden in der Grafik.
Nun weißt du, was der y-Achsenabschnitt ist. Schauen wir uns die Steigung $m$ genauer an.

Greifen wir das Beispiel wieder auf. Bei der Geraden $y=2x-1$ ist der Anstieg $2$, sie ist in der Grafik weiter unten grün dargestellt. Die Gerade steigt von links nach rechts. Für jede Einheit nach rechts gehen wir zwei Einheiten nach oben.

Geradengleichungen – Normalform (y=mx+b) | sofatutor.com (3)

Ändern wir nun die Steigung $m$ zu $1$, erhalten wir die Geradengleichung $y=1x-1$, in lila im Koordinatensystem dargestellt. Der $y$-Achsenabschnitt bleibt gleich und die Gerade steigt weiterhin von links nach rechts. Für jede Einheit nach rechts wird nur noch eine Einheit nach oben gegangen.
Ist $m=0$ (orange Gerade in der Grafik), so bleibt der $y$-Achsenabschnitt gleich, aber die Gerade verläuft parallel zur $x$-Achse, ohne zu steigen oder zu fallen.
Ändern wir $m$ nun zu $-1$. Wir erhalten die Geradengleichung $y=-x-1$ (hellblau dargestellt in der Grafik). Auch hier bleibt der $y$-Achsenabschnitt der gleiche, aber die Gerade fällt von links nach rechts, da die Steigung negativ ist. Für jede Einheit nach rechts müssen wir eine Einheit nach unten gehen.

Ablesen der Normalform der Geradengleichung aus dem Koordinatensystem

Wie oben schon erwähnt, kannst du sowohl $m$ als auch $b$ aus dem Koordinatensystem ablesen. Vielleicht kannst du dir nach dem vorherigen Kapitel schon denken, wie das geht.Versuchen wir gemeinsam, die Gleichung der beiden folgenden Graphen herauszufinden.

Geradengleichungen – Normalform (y=mx+b) | sofatutor.com (4)

Schauen wir uns zuerst die rote Gerade an. Diese schneidet die $y$-Achse im Punkt $y=3$. Da wir wissen, dass $b$ den Schnittpunkt mit der $y$-Achse angibt, können wir sagen: $b=3$. Für die Steigung gehen wir eine Einheit nach rechts und müssen dann $2$ Einheiten nach oben. Daraus schließen wir: $m=2$. Unsere erste Gleichung lautet also:

$y=2\,x+3$

Versuchen wir als Nächstes die Geradengleichung für die blaue Gerade herauszufinden. Die Gerade schneidet die $y$-Achse im Punkt $y=7$. Also ist $b=7$. Für die Steigung schauen wir uns an, was passiert, wenn wir eine Einheit nach rechts gehen. Diesmal müssen wir nach unten gehen. Wir wissen also, dass $m$ negativ ist. Gehen wir eine Einheit nach rechts, müssen wir $4$ Einheiten nach unten gehen. $m$ ist also $-4$. Unsere Geradengleichung lautet:

$y=-4\,x+7$

Rechnen mit der Normalform der Geradengleichung

Zurück zum Marsrover. Er hat aktuell $20$ Energieeinheiten übrig. Wenn er pro $\pu{km}$ $2$ Einheiten verbraucht, wie viele $\pu{km}$ kann er dann noch fahren, bevor sein Akku leer ist? Erreicht er einen $8\,\pu{km}$ entfernten Punkt?
Setzen wir zuerst die bekannten Werte in die Gleichung ein. Die Variable $x$ gibt die gefahrenen $\pu{km}$ an und $y$ steht für die verbleibenden Energieeinheiten. Wir müssen die Werte für $m$ und $b$ herausfinden. Da die Energieeinheiten um $2$ pro $\pu{km}$ sinken, setzen wir $-2$ für $m$ ein. Da der Rover $20$ Energieeinheiten bei $0$ gefahrenen $\pu{km}$ übrig hat, liegt der $y$-Achsenabschnitt bei $y=20$. Unsere Gleichung sieht folgendermaßen aus:

$y=-2x+20$

Uns interessiert, wie viele $\pu{km}$ der Rover fahren kann, bis seine Akkus leer sind. Daher setzen wir $y=0$ und stellen die Gleichung um, damit wir $x$ berechnen können.

$0=-2x+20$ $|+2x$

$2x=20$ $|:2$

$x=10$

Der Rover kann also noch $10\,\pu{km}$ fahren und damit schafft er die $8\,\pu{km}$ lange Strecke. Zeichnest du die Gerade, dann kannst du die Lösung auch direkt ablesen. Bei $x=10$ schneidet die Gerade die $x$-Achse.

Normalform der Geradengleichung aufstellen

Der Rover soll zu den Koordinaten $F(7|6)$ fahren. Dafür hat er zwei Startmöglichkeiten, den Punkt $S_1(1|0)$ oder den Punkt $S_2(5|0)$. Er kann jedoch nur eine maximale Steigung von $m\leq{2,5}$ bewältigen. Welche Route ist besser für ihn?
Da es eine maximale Steigung für den Rover gibt, müssen wir den Anstieg der beiden Routen berechnen. Untersuchen wir die Route von $S_2$ zu $F$. Die Steigung berechnen wir mit:

$m_1=\frac{y_2-y_1}{x_2-x_1} = \frac{6-0}{7-5} = \frac{6}{2} = 3$

Der Anstieg beträgt $3$, das ist zu steil für den Rover.
Probieren wir es mit dem Startpunkt $S_1$.

$m_2=\frac{y_2-y_1}{x_2-x_1} = \frac{6-0}{7-1} = \frac{6}{6} = 1$

Der Anstieg beträgt bei diesem Startpunkt $1$. Das sieht machbar für den Rover aus. Doch er benötigt die gesamte Geradengleichung, um sich in Bewegung setzen zu können. Um den $y$-Achsenabschnitt zu bestimmen, setzen wir alle bekannten Werte ein. Die Steigung ist $m=1$. Nun wählen wir einen Punkt der Route und setzen die Werte für $x$ und $y$ ein, um den $y$-Achsenabschnitt $b$ zu bestimmen. Wir wählen den Punkt $F(7|6)$.

$y=m\,x+b$

$\Leftrightarrow 6=1 \cdot 7 + b$ $|-7$

$-1 = b$

Wir erhalten also $b=-1$. Also lautet die Gleichung in Normalform:

$y=x-1$

Jetzt steht der NASA-Mission nichts mehr im Weg.

In diesem Video über die Normalform der Geradengleichung

In diesem Video lernst du, was die Normalform der Geradengleichung ist. Du lernst, wie du die Normalform aufstellen kannst. Zudem wird gezeigt, welchen Einfluss die Steigung und der $y$-Achsenabschnitt haben und wie du mithilfe von zwei Punkten die Geradengleichung aufstellen kannst.
Willst du dein Wissen über die Normalform der Geradengleichung vertiefen, findest du Übungen zum Thema auf dieser Seite.

Geradengleichungen – Normalform (y=mx+b) | sofatutor.com (2024)

References

Top Articles
Latest Posts
Article information

Author: Kelle Weber

Last Updated:

Views: 5841

Rating: 4.2 / 5 (73 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Kelle Weber

Birthday: 2000-08-05

Address: 6796 Juan Square, Markfort, MN 58988

Phone: +8215934114615

Job: Hospitality Director

Hobby: tabletop games, Foreign language learning, Leather crafting, Horseback riding, Swimming, Knapping, Handball

Introduction: My name is Kelle Weber, I am a magnificent, enchanting, fair, joyous, light, determined, joyous person who loves writing and wants to share my knowledge and understanding with you.